Quasiconformal mappings with controlled Laplacian and Hölder continuity
نویسندگان
چکیده
منابع مشابه
Hölder Continuity for Optimal Multivalued Mappings
Gangbo and McCann showed that optimal transportation between hypersurfaces generally leads to multivalued optimal maps – bivalent when the target surface is strictly convex. In this paper we quantify Hölder continuity of the bivalent map optimizing average distance squared between arbitrary measures supported on Euclidean spheres.
متن کاملConvex functions and quasiconformal mappings
Continuing our investigation of quasiconformal mappings with convex potentials, we obtain a new characterization of quasiuniformly convex functions and improve our earlier results on the existence of quasiconformal mappings with prescribed sets of singularities.
متن کاملGlobal Multi-armed Bandits with Hölder Continuity
Standard Multi-Armed Bandit (MAB) problems assume that the arms are independent. However, in many application scenarios, the information obtained by playing an arm provides information about the remainder of the arms. Hence, in such applications, this informativeness can and should be exploited to enable faster convergence to the optimal solution. In this paper, formalize a new class of multi-a...
متن کاملQuasiconformal Mappings in Space
U' denotes the image of U, the disk | s — So| and maps the infinitesimal circles | z — zo\ = e onto infinitesimal ellipses; H(z0) gives the ratio of the major to minor axes and J(zo) is the absolute value of the Jacobian. Suppose next that w(z) is continuously difîerentiable with J(z)>...
متن کاملQuasiconformal Mappings Which Increase Dimension
For any compact set E ⊂ R , d ≥ 1 , with Hausdorff dimension 0 < dim(E) < d and for any ε > 0 , there is a quasiconformal mapping (quasisymmetric if d = 1) f of R to itself such that dim(f(E)) > d− ε .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales Academiae Scientiarum Fennicae Mathematica
سال: 2019
ISSN: 1239-629X,1798-2383
DOI: 10.5186/aasfm.2019.4440